Simultaneous approximation and algebraic independence of numbers
نویسندگان
چکیده
منابع مشابه
Simultaneous Approximation and Algebraic Independence
We establish several new measures of simultaneous algebraic approximations for families of complex numbers (θ1, . . . , θn) related to the classical exponential and elliptic functions. These measures are completely explicit in terms of the degree and height of the algebraic approximations. In some instances, they imply that the fieldQ(θ1, . . . , θn) has transcendance degree≥2 overQ. This appro...
متن کاملSimultaneous Approximation of Logarithms of Algebraic Numbers
Recently, close connections have been established between simultaneous diophantine approximation and algebraic independence. A survey of this topic is given by M. Laurent in these proceedings [7]. These connections are one of the main motivations to investigate systematically the question of algebraic approximation to transcendental numbers. In view of the applications to algebraic independence...
متن کاملSimultaneous Approximation to Pairs of Algebraic Numbers
The author uses an elementary lemma on primes dividing binomial coefficients and estimates for primes in arithmetic progressions to sharpen a theorem of J. Rickert on simultaneous approximation to pairs of algebraic numbers. In particular, it is proven that max {∣∣∣∣√2− p1 q ∣∣∣∣ , ∣∣∣∣√3− p2 q ∣∣∣∣} > 10−10q−1.8161 for p1, p2 and q integral. Applications of these estimates are briefly discussed.
متن کاملEffective simultaneous approximation of complex numbers by conjugate algebraic integers
We study effectively the simultaneous approximation of n − 1 different complex numbers by conjugate algebraic integers of degree n over Z( √ −1). This is a refinement of a result of Motzkin [2] (see also [3], p. 50) who has no estimate for the remaining conjugate. If the n−1 different complex numbers lie symmetrically about the real axis, then Z( √ −1) can be replaced by Z. In Section 1 we prov...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1962
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1962-10782-4